Microenvironment and Immunology Delicate Balance amongThree Types of TCells inConcurrent Regulation of Tumor Immunity
نویسندگان
چکیده
The nature of the regulatory cell types that dominate in any given tumor is not understood at present. Here, we addressed this question for regulatory T cells (Treg) and type II natural killer T (NKT) cells in syngeneic models of colorectal and renal cancer. In mice with both type I and II NKT cells, or in mice with neither type of NKT cell, Treg depletion was sufficient to protect against tumor outgrowth. Surprisingly, in mice lacking only type I NKT cells, Treg blockade was insufficient for protection. Thus, we hypothesized that type II NKT cells may be neutralized by type I NKT cells, leaving Tregs as the primary suppressor, whereas in mice lacking type I NKT cells, unopposed type II NKT cells could suppress tumor immunity even when Tregs were blocked.We confirmed this hypothesis in 3 ways by reconstituting type I NKT cells as well as selectively blocking or activating type II NKT cells with antibody or the agonist sulfatide, respectively. In this manner, we showed that blockade of both type II NKT cells and Tregs is necessary to abrogate suppression of tumor immunity, but a third cell, the type I NKT cell, determines the balance between these regulatory mechanisms. As patients with cancer often have deficient type I NKT cell function, managing this delicate balance among 3 T-cell subsets may be critical for the success of immunotherapy for human cancer. Cancer Res; 73(5); 1514–23. 2012 AACR.
منابع مشابه
Microenvironment and Immunology IL-17A Produced by gd T Cells Promotes Tumor Growth in Hepatocellular Carcinoma
Interleukin (IL)-17A is expressed in the tumor microenvironment where it appears to contribute to tumor development, but its precise role in tumor immunity remains controversial. Here, we report mouse genetic evidence that IL-17A is critical for tumor growth. IL-17A–deficientmice exhibited reduced tumor growth,whereas systemic administration of recombinant mouse IL-17A promoted the growth of he...
متن کاملCutting edge: Th17 and regulatory T cell dynamics and the regulation by IL-2 in the tumor microenvironment.
Th17 cells play an active role in inflammation and autoimmune diseases. However, the nature and regulation of Th17 in the context of tumor immunity remain unknown. In this study, we show that parallel to regulatory T (Treg) cells, IL-17(+) CD4(+) and CD8(+) T cells are kinetically induced in multiple tumor microenvironments in mice and humans. Treg cells play a crucial role in tumor immune path...
متن کاملOncology meets immunology: the cancer-immunity cycle.
The genetic and cellular alterations that define cancer provide the immune system with the means to generate T cell responses that recognize and eradicate cancer cells. However, elimination of cancer by T cells is only one step in the Cancer-Immunity Cycle, which manages the delicate balance between the recognition of nonself and the prevention of autoimmunity. Identification of cancer cell T c...
متن کاملEvaluation of naloxone and alum adjuvants effect in HPV vaccine on immunoediting of mice in tumor microenvironment
Background: Papilloma viruses are pathogenic double-strand DNA viruses that genotypes 16 and 18 are the cause of more than 50 percent of cancers as cervical cancer. Although vaccination is one of the best options for the papilloma cancer prevention but that is the most of world healthy problem, it is attempted to evaluate both naloxone (NLX) and alum mixture used as adjuvants together with HPV1...
متن کاملSTAT3 as a Key Factor in Tumor Microenvironment and Cancer Stem Cell
Background Recent studies revealed that tumor-associated macrophages (TAMs) play a decisive role in the regulation of tumor progression by manipulating tumor oncogenesis, angiogenesis and immune functions within tumor microenvironments. Signal transducer and activator of transcription 3 (STAT3), which is a point of convergence for numerous oncogenic signalling pathways, is constitutively activ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013